Performance of Photonic Filter and Its Applications for Microwave Circuits

Pooja Sahoo, P.K. Singhal

Dept. of Electronics Engineering, RGPV University, Bhopal, MP, India
Madhav Institute of Technology & Science, Gwalior, MP, India

Abstract

In this paper we presented a newly photonic band gap (PBG) structures for microwave applications. This new type PBG structure is a two dimensional square lattice with each element consisting of a metal pad and four connecting branches. Experimental evidence is provided of the implementation of filter with wide band gap at higher cut off frequency (7 GHz) for six cell lattice pbg structure and insertion loss S12 is -80.9dB. a new compact E-type PBG structure provided wide band gap at cut off frequency (3GHz)& transmission coefficient S12 -52dB that shows excellent agreement with results predicted by the theory. This paper represents the design and simulation of wideband bandstop photonic filter using microstrip which is designed to have a center frequency of 1.5, 3 & 7GHz. The filters are designed on a FR-4 substrate having dielectric constant \(\varepsilon_r = 4.4 \) and thickness \(h = 1.6\text{mm} \). The design and simulation are performed using computer simulation technology software.

Keywords

E-cell lattice structure, Photonic Band Gap structure (PBGS), square lattice cell, Computer Simulation Technology Software (CST), Printed Circuit Board (PCB), and Spectrum Analyzer.

I. Introduction

Defected ground structure for microstrip line was most common topic for research at recent year. They are giving a lot of different structure for implementing DGS [1]. By using these different structures LPF [2], BSF [3], power divider [4], power amplifier etc. is implemented. In addition to EBG (electromagnetic band gap) structure, DGS and PBG structure was created by etching different shapes in ground plane. Which increase the inductance and capacitance values of microstrip line, so undesired output response fluctuations will be eliminated and the output is sharp stop band in case of LPF [5] and increased bandwidth in case of BSF [6]. PBGS has property of rejecting electromagnetic wave in certain frequency and direction, and most important function of these structures is the filtering of frequency bands. Few newly designed PBG structures are presented in this paper for microwave applications.

II. Design Of Photonic Band Gap Structure

The two dimensional square lattice PBG structure with 46mm*30 mm is shown in the figure 1. FR-4 lossy material with dielectric constant \(\varepsilon_r = 4.4 \), substrate height \(h = 1.6\text{mm} \) and loss tangent 0.02 used for the PBG design. The result shows a wide rejection band in case of square lattice cell. And another new E-type compact photonic band gap structureof dimension 120mm * 30mmis employing in figure-2. Four cell PBG structure exhibits band rejection characteristics at center frequency 3GHz.

Cut off frequency can be calculated by:

\[
 f_0 = \frac{f_1 + f_2}{2}
\]

Fig. 1: Layout of six square lattice cell PBG Filter

Fig. 2: Layout of Eight E-cell PBG Filter

Fig. 3: fabricatedstructure of eight E-cell type PBG filter on PCB
III. Result

Result between S-parameters in dB and frequency in GHz are analyzed on CST and measured on function analyzer. Figure-5 shows that the center frequency for six cell PBG filter is $f_c = 7$ GHz and band gap frequencies are $f_1 = 5$ GHz & $f_2 = 9.5$ GHz and the observed bandwidth 4.5 GHz which is nearly 64.28% of center frequency.

For four cell E-type PBG filter response shows center frequency $f_c = 3$ GHz at $S_{12} = -52$ dB and corner frequencies $f_1 = 1$ GHz & $f_2 = 2$ GHz from figure-6. The obtaining bandwidth is 1 GHz, which is nearly 35% of center frequency. When number of cell increased figure-3 than we obtained wide band gap at center frequency 1.5 GHz from figure-7 and transmission coefficient $S_{21} = -60$ dB. The obtaining bandwidth is 1.6 GHz which is approximately 106.667% of center frequency.

In Fig. 6: shows Smith chart for six cell PBG filter, represent the stability of filter at the 10 frequency/GHz (45, -106) Ω.

In Fig. 9: Smith chart for six cell two dimensional PBG filter

In Fig. 10: Smith chart for Eight E-type microstrip cell PBG structure
structure
Smith chart for Eight E-type cell PBG filter figure-10, represent the stability of filter for S_{11} at the 0 frequency/GHz(50, -5.21e-18) Ω and 5 frequency/GHz (14.8, 1.07) Ω and for S_{12} (50,-1.53e-17) Ω & (19.8, 68.6)Ω.

IV. Conclusion
Microwave photonic filter are photonic subsystem designed with the aim of carrying equivalent tasks to those of an ordinary microwave filter. Photonic filter bringing supplementary advantages such as high bandwidth, low loss, immunity to electromagnetic interference and re-configurability.

Form figure-8, It has been found that the measured results are in good agreement with the simulated value. Measured result obtained by 3GHz function generator which provide insertion loss S12 -49db and center frequency fc 1.59 GHz at bandwidth 1.62GHz. In case of four cells E-Type PBG filter, a sharp rate cut off without sideband fluctuation response has been achieved. In future PBG’s Filter can be used as wide band stop filters. These novel structures have wide stopband and compact size, uniplanar configuration, which can be easily incorporated into the ground planes of any other planar structures.

References
[7]. CST (computer Simulation Technology) software microwave studio 2010.